$K_2Al_2O_4$ are very different from those of pure iron. The emissivity increases markedly with temperature as is the case for oxide coated filaments, indicating dissociation of the potassium oxide at elevated temperatures. The long wave length limit lies intermediate between that of iron and that of potassium, showing the surface to be sparsely covered with elemental potassium. The long wave length limits show clearly that the ratio of elemental potassium to the total potassium content is greatly reduced by the presence of aluminum oxide.

The photoelectric properties of the $K_2Al_2O_4$ promoted catalyst appear to come from the K_2O which has failed to combine with the Al_2O_3 . It is suggested that the poisoning action of K_2O alone is due to the ease with which it dissociates, and that it is the free potassium which is the actual poison.

WASHINGTON, D. C.

[CONTRIBUTION FROM THE CHEMICAL LABORATORY OF NORTHWESTERN UNIVERSITY]

THE SOLUBILITY OF HYDROGEN FLUORIDE IN BENZENE AND IN OCTANE

By J. H. Simons

RECEIVED OCTOBER 17, 1930 PUBLISHED JANUARY 12, 1931

The study of the solubility of gaseous hydrogen fluoride in organic solvents was begun in an attempt to obtain more information about the polymer H_6F_6 whose existence has been indicated by Simons and Hildebrand from considerations of the density of the gas.¹ While the results have not aided greatly in this connection, an example of an unusual type of solution has been found in the case of hydrogen fluoride dissolved in benzene.

Apparatus.—The apparatus, the design of which is shown in Fig. 1, was made entirely of copper with all permanent joints sealed together with silver solder. The three vessels of which the apparatus consisted were held together with screw connections. Two of the vessels were held in separate constant temperature baths; the one served as container for the liquid hydrogen fluoride and the other for the solution. The third vessel, which fastened on the bottom outlet of the solution container, was the constant volume sample tube. Copper is a suitable material for this apparatus, for hydrogen fluoride in the absence of an oxidizing agent, such as oxygen from the air, is without action on it, and oxygen was rigorously excluded.

Materials Used.—The anhydrous hydrogen fluoride was made in the manner described by Simons² and distilled directly into the apparatus, which had been carefully cleaned, dried and filled with dry nitrogen. The

¹ Simons and Hildebrand, THIS JOURNAL, 46, 2183 (1924).

² Simons. *ibid.*, **46**, 2179 (1924).

benzene was pure thiophene-free material which was fractionated, dried with phosphorus pentoxide and with sodium, and finally distilled directly into the apparatus. The octane was prepared synthetically in this Laboratory and was carefully dried in the same manner as for the benzene. The nitrogen was the commercial gas from a cylinder from which the oxygen was removed by towers of cuprous ammonium chloride solution. It was dried with sulfuric acid and with phosphorus pentoxide.

Method of Procedure.—For the determinations made without the use of nitrogen, the vessel of hydrogen fluoride was allowed to warm up to the

Fig. 1.-Solubility apparatus.

boiling point. The gas formed was passed slowly through the solvent, the solvent vessel being kept at a temperature sufficiently high so that liquid hydrogen fluoride would not condense in it. Equilibrium was considered established when samples of the solution taken over intervals of the passage of the gas gave check analyses. Raising the temperature of the solution vessel gave determinations at higher temperatures.

For the determinations made with a partial pressure of hydrogen fluoride less than that given

by boiling the liquid, nitrogen was passed through the vessel containing it while it was kept at a constant temperature.

The sample for analysis was drawn off into the sample tube, which had a volume of about 20 cc. It was weighed, forced into an aqueous solution containing an excess of sodium hydroxide over that necessary to neutralize the hydrogen fluoride and the excess was titrated with a standard hydrochloric acid solution.

Results

The results of these determinations are recorded in Table I and shown graphically in Fig. 2.

Several different lots of both benzene and hydrogen fluoride were used in these experiments, which extended over a considerable period of time. The agreement of the results indicates that they are free from large accidental errors.

The vapor pressure of hydrogen fluoride from the solution was plotted against its mole fraction at different temperatures as shown in Fig. 3.

It was calculated from the vapor pressure of liquid hydrogen fluoride at the temperature at which the pure liquid was held, the vapor pressure of benzene at the temperature of the solution, and the barometric pressure. Table II shows the data from which the curves were drawn. The mole fractions were taken from the smooth curves in Fig. 2. The straight lines represent the "ideal" vapor pressures of hydrogen fluoride from the solution as calculated from Raoult's law.

It is to be expected that hydrogen fluoride with its high dielectric constant would show a large positive deviation from Raoult's law in benzene solutions. This is found at the higher concentrations but at low concentrations a negative deviation is observed.

TABLE I
Ermonen er

Solubility of Hydrogen Fluoride in Benzene and in Octane

~		s	olution in	benzene-				In c	octane	
Hydrogen fluoride liquid at the boiling point		HF liquid at 0°C.		HF liquid at -18°C.		HF li at -7	quid 7°C.	HF ai boilin	liquid t the Ig point	
Temp. of soln., °C.	Mole fraction HF	Temp. of soln., °C.	Mole fraction HF	Temp. of soln., °C.	Mole fraction HF	Temp. of soln., °C.	Mole fraction HF	Temp. of soln., °C.	f Mole fraction HF	
23.1	0.0630	25.6	0.0384	23.0	0.0355	23.6	0.0227	25.1	0.00338	
31.1	.0525	30.2	.0346	31.8	.0323	30.0	.0208	36.0	.00276	
42.3	. 0394	40.5	.0277	20.8	.0382	45.0	.0128	45.2	.00235	
27.2	.0588	50.0	.0201	31.2	.0306	56.0	.00825	5 51.0	.00194	
33.9	.0495	27.5	.0368	40.8	.0244	65.0	.00557	66.3	.00170	
39.1	.0442	52.0	.0181	52.8	.0161	19.6	.0249			
39.4	.0427	56.3	.0150	58.1	.0117	38.3	.0163			
39.2	.0437	65.1	.0084	21.0	.0375	52.9	.0098			
25.8	.0596	21.0	.0425	20.9	.0381	60.8	.0067			
29.3	.0556	32.9	. 0330	28.0	.0327					
29.4	.0548	61.2	.0108	38.0	.0258					
32.9	.0507			49.0	.0184					
44.8	.0365			60.6	. 0098					
44.7	.0382									
54.1	.0243									
54.1	.0248									
21.5	.0653									
22.0	.0648									
21.6	.0650									
24.2	.0625			Not	ъ.—The	e mole c	of hydrog	gen fluc	ride is tal	ken
24.2	.0620			as the	formul	a weigh	nt of th	e moleo	cular spec	ies,
35.6	.0510			HF.						
36.7	.0468									
62.5	.0155									
62.4	.0150									
46.0	.0332									
51.0	.0280									
54.0	.0246									
61.0	.0167									
72.8	00395	, ,								

Temp. of soln., °C.	Mole Liqu -77°C.	fraction id hydrog –18°C.	HF in sol gen fluorio 0°C.	ution le at B. p.	Vapor pres- sure HF	Vapor pres- sure C6H6	Partial s Liquid 1 -77°C.	pressure olution, i hydrogen – 18°C.	of HF mm. fluor 0°C.	' over ide at B. p.	
20	0.0248	0.0385	0.0432	0.0673	768	75.6	4.5	147	203	669	
30	.0203	.0315	.0355	.0548	1070	120.2	4.2	137	283	625	
40	.0158	.0244	.0275	.0422	1470	183.6	3.8	123	254	561	
50	.0112	.0173	.0196	.0298	1990	271.4	3.2	104	214	473.0	6
60	.0071	.0102	.0117	.0180	2630	390.1	2.4	77.5	160	354.9	9
Vapor pres- sure HF, mm. Average baro-	5.1	166	342								
sure, mm.	750	740	742	745							

TABLE II EXPERIMENTAL DATA FOR CURVES

This is an example of an unusual type of solution. It is similar to the case of pyridine-water³ in that both positive and negative deviations from Raoult's law are found in the same curve, but it is different in that pyridine has a negative deviation at very high concentration, but a positive deviation at moderate or low concentrations.

Fig. 2.—Solubility of hydrogen fluoride in benzene and in octane. O, Solubility in benzene with HF liquid at 19.5°; \times , solubility in benzene with HF liquid at 0°; \otimes , solubility in benzene with HF liquid at -18° ; +, solubility in benzene with HF liquid at -77° ; \oplus , solubility in octane with HF liquid at 19.5°.

A possible explanation of this phenomenon can be given by a consideration of the electric field surrounding the highly polar hydrogen fluoride molecule. When these molecules are in sufficient concentration to exert an

⁸ J. H. Hildebrand, "Solubility," The Chemical Catalog Co., New York, 1924, p. 41.

influence upon one another, they will be mutually attracted and so tend to be removed from the solution. This explains the positive deviation from Raoult's law at high concentration. When the concentration is so low that the distance between the molecules of hydrogen fluoride is great enough to make the mutual attraction small, then the electric field around each of the hydrogen fluoride molecules will attract even the slightly polar benzene molecules and so cause the vapor pressure of hydrogen fluoride from the solution to be less than would be given by Raoult's law.

The author wishes to acknowledge the assistance of Mr. Eric E. Johnson in making the determinations.

Summary

The solubility of hydrogen fluoride in octane has been measured.

The solubility of hydrogen fluoride in benzene has been measured over a range of temperature and partial pressure of hydrogen fluoride.

The vapor pressure of hydrogen fluoride from a benzene solution shows a negative deviation from Raoult's law at very low concentrations but a high positive deviation at higher concentrations.

A possible explanation of this phenomenon is given.

EVANSTON, ILLINOIS